skip to main content


Search for: All records

Creators/Authors contains: "McElveen, Kayleigh A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Adding Fe3O4nanoparticles to composites of [Fe(Htrz)2(trz)](BF4) spin-crossover polymer and polyaniline (PANI) drives a phase separation of both and restores the molecular structure and cooperative effects of the spin-crossover polymer without compromising the increased conductivity gained through the addition of PANI. We observe an increased on-off ratio for the DC conductivity owing to an enlarged off state resistivity and a 20 times larger AC conductivity of the on state compared with DC values. The Fe3O4nanoparticles, primarily confined to the [Fe(Htrz)2(trz)](BF4) phase, are ferromagnetically coupled to the local moment of the spin-crossover molecule suggesting the existence of an exchange interaction between both components.

     
    more » « less
  2. From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe( ii ) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe( ii ) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe( ii ) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition. 
    more » « less
  3. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state. 
    more » « less